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The nonlinear shallow-water equations in a rotating frame are integrated numerically 
over a sloping bottom with free lateral boundary conditions in such a way that the fluid 
determines its own level. Three different finite-difference schemes are tested and found 
to give equivalent results. The results are compared with nonlinear analytic solutions 
in one and two dimensions, and a high order of accuracy is achieved. The techniques 
used could be of importance in the operational forecasting of storm surges at irregular 
coast lines. 

The “shallow-water” equations of fluid motion for a rotating frame, the deriva- 
tion of which may be found in a variety of texts, for example [l], may be written 
as follows: 

3V 

at= 
-v. Vv-gV7 -fk x v, 

a?) 
at= --v . [(W, Y) + +I = --v . ($5). 

(1) 

Here v is the horizontal velocity vector, 7 the displacement from equilibrium 
of the free surface, h(x, u) the variable depth of the bottom below equilibrium 
water level, 5 = h + 3 the depth of the fluid, g the acceleration of gravity, f the 
coriolis parameter, and k a unit vector in the vertical. Figure 1 shows the geometric 
configuration. 

These equations have the property that the boundary conditions at the free 
surface and at the bottom have already been satisfied in the derivation of the 
equations themselves. In an arbitrary configuration, such as that of Fig. 1, for 
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example, only Eqs. (1) have to be solved, given a set of initial conditions, and 
the fluid determines its own level at every point of space and time. Examples 
of theoretical studies involving a sloping bottom without lateral boundary 
conditions are those of Ball [2], Stoker [3], and Carrier and Greenspan [4]. Given 
the nonlinearity of the equations and the way in which h(x, y) enters, it is not 
surprising that only very special cases are amenable to analytic methods. 

When computational methods have been used with these equations, it has 
been customary to make for ease of treatment by introducing artificial vertical 
walls along grid lines, at which the supplementary condition u = 0 or v = 0 
is applied. This has been done extensively, for example, in storm-surge forecast 

FIG. 1. Geometric configuration and notation for the present study. The y-direction is into 
the paper. 

programs, where the linearized version of (1) is used, for the most part. In the 
storm surge the practical concern lies entirely in the values of the variables near 
the boundaries, and it is thus of importance to represent in some detail the natural 
shape of the coast-bays, promontories, estuaries, etc. A coast with varying 
curvature must, according to the usual formulation, be represented by a boundary 
of short segments of vertical walls meeting orthogonally-a many-cornered, 
totally-reflecting boundary, which produces highly undesirable computational 
effects precisely in the region where accuracy is desired. This problem is discussed, 
for example, by Platzman [5, pp. 36-371. Reid and Bodine [6] have computed 
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surges in Galveston Bay using vertical boundaries which may be moved, depending 
on the height of the water at the boundary. These are empirically-oriented compu- 
tations which attempt to validate their techniques by reference to field measure- 
ments of the tides or surges. 

We present in this paper a systematic computational study using no lateral 
boundary conditions, in which the dynamics of the fluid under Eqs. (1) determines 
the position of the free surface on the sloping boundary at each time step. There 
exist analytical solutions-or solutions computed by the entirely independent 
method of characteristics-in both one and two dimensions which provide sufficient 
verification of the accuracy of our techniques. 

Most of these analytic solutions are concerned with the tendency of the 
nonlinear shallow-water equations to steepen wavefronts until a vertical slope 
is established, at which point the equations cease to have physical meaning. Our 
computational procedures must therefore be able to represent this mathematical 
phenomenon, which for want of a better name we shall call “wave-breaking.” 

Obviously any viable difference scheme for this highly nonlinear system must 
have effective control of the energy. We have tested three schemes. One, the 
Lax-Wendroff as modified by Richtmyer [7], is well known and has been used 
before in connection with these equations (see, for example, [S]). A second is 
derived according to the principle of energy conservation as formulated by 
Arakawa [9]. The third is a simpler scheme, economical in regard to computer 
time, in which we relied on the quasi-implicit character of the difference equations 
to stabilize the computation. The difference equations for all schemes are written 
out in full in Appendix A. It will be noted that the coriolis term is incorporated 
in each case. This was set equal to zero for all experiments except Experiment 6, 
although the dimensional scales of the first five experiments are such that it would 
in any case be nonfunctional. 

Experiment 1 

This was designed to test the comparative behavior of the three schemes. A 
one-dimensional cosine wave in the free surface is imposed as an initial condition: 

27Tx 
7)(x, 0) = 0.1 h, cos 7 

u(x, 0) = 0 

with vertical walls at x = 0, L and constant depth h, . The linear period of the 
oscillation is about 110 time steps. The results are depicted in Fig. 2. By two 
linear periods the slope of the surface has become quite steep, and becomes 
approximately vertical by 280 time steps. During this computation the three 
schemes agree very closely; in fact, we may say that they produce equivalent 
results so long as the equations (1) themselves have physical meaning. The total 
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FIG. 2. Profile of the free surface at different times in the free oscillation in a one-dimensional 
basin of constant depth. For this computation q,/h = 0.1 (Experiment 1). ~ Scheme II; 
- - - - - - - - Schemes I and III. 
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FIG. 3. Total energy of a mass of water oscillating freely in a basin of constant depth (Ex- 
periment 1). Time is measured in units of At. Compare Fig. 2. . . . . . . . . Scheme I; ~ 
SchemeIT;--------SchemeIII. 
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energies of the fluid, as computed by each scheme, are plotted in Fig. 3. Up to 
the time the computations become meaningless, the energies differ from each 
other and from the initial value by less than two percent. 

Experiment 2 

This is the computation of a simple wave advancing into still water of constant 
depth from the point x = 0: 

7)(0, t) = r], sin(S2t - 7r). (2) 

According to the theoretical calculations of Stoker [3], this wave will break at time 

and the coordinate of the point of vertical tangency to the free surface at this 
time will be 

XB = tB dg7; - &t-i, 

where h is the wavelength of the incident wave. In the numerical computations 
we used an incident wave of length 100 ds with a linear period of 145 At. The 
ratio q,,/h, which may be thought of as the measure of nonlinearity, was taken 
as 0.1. The corresponding values for the breaking wave are then 

tr, =z= 226 At, 
XB =s= 108 As. 

The results are presented in Fig. 4. At time step 114 the wave is still almost a 
pure sine wave; after 40 more time steps the front has begun to steepen; and time 
step 224 is just about breaking time. It is seen that the three computational schemes 
agree very well with each other and with the theory. (Even the “parasitic waves” 
in the wake of the steepening front are quite similar in the three schemes.) It 
may further be noted that the amplitude of the wave remains unchanged, in 
accordance with the theory. 

With this background it is possible to have sufficient confidence to proceed 
to the computations using a sloping bottom and no lateral boundaries. The 
computation of these models is quite delicate. For some grid points, the depth 
[ is positive (“underwater” points), and these can be treated in the usual manner. 
For points beyond the shore line, however, the depth 6 is negative (“underground” 
points), whence @ is imaginary, and the equations are exponentially unstable 
to the perturbations introduced by truncation. In general, our procedure is to 
set all variables equal to zero at points for which 5 does not exceed some very 
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small positive quantity determined by the accuracy of the computation. Some 
of the very stringent tests required a slight modification of this procedure, the 
details of which are relegated to Appendix B. 

For the following experiments, Schemes II and III were used. Since the dif- 
ferences were consistently negligible, only the results of Scheme III are shown. 

FIG. 4. The simple wave: profile of an incident sine wave propagating into quiet water of 
constant depth. For this computation ~/h = 0.1; the linear period of the wave is 145 At; and 
the wavelength is 100 As (Experiment 2). ~ Scheme II ; - - - - - - - Schemes I and III. 

Experiment 3 

The case of a bottom with constant slope is theoretically tractable. The incident 
wave (2) is imposed, as in Experiment 2, but now the sloping bottom favors the 
early breaking of the wave, which occurs before any perturbation has reached 
the shore line (see Fig. 5). The parameters of this experiment were chosen to 
conform to those of Stoker’s computations by the method of characteristics 
[3, p. 761. It is evident that the wave breaks before one-half wavelength has entered 
the field. The relevant parameters are 

s&u = 0.2, 

tan CY = 0.4 T hM , 
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where hM is the depth at x = 0 and tan LX is the constant bottom slope. With 
these parameters, Stoker’s dimensionless values for the time and position of 
breaking become: 

ta f 228 At, 

x, f 40 As. 

The two computations, by entirely different methods, are in satisfactory agreement. 
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FIG. 5. Profile of an incident sine wave propagating into quiet water with a bottom of constant 
slope. For this computation q./hM = 0.2. See text for further specification of parameters (Ex- 
periment 3). 

Experiment 4 

Here we have chosen a bottom of parabolic shape, for which no analytic solution 
exists. For comparison with Experiment 3, we took the same mean slope and 
the same incident wave. The results are presented in Fig. 6. The perturbation 
reaches the shore at time step 198, and the wave breaks at time step 288. Thus 
the curvature of the bottom has delayed the breaking time by about 23 % over 
that of the previous experiment with the same mean slope. This makes physical 
sense. It is commonly observed that the rush of water down the shore toward 
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the oncoming wave accelerates the breaking time [3, p. 631. For the first 262 time 
steps of the present experiment, the trough of the wave lies over the part of the 
bottom with slope less than the mean. From that time on, the more rapid downward 
rush of water along the coast then produces wave-breaking within 20 more time 
steps. At the point of breaking, therefore, the wave is in very shallow water, 
a configuration familiar enough to bodysurfers when the coast is relatively steep. 

FIG. 6. Profile of an incident sine wave propagating into quiet water with a bottom of para- 
bolic shape. The bottom has the same mean slope as in Fig. 5, and the wave parameters are the 
same. wxperiment 4). 

Experiment 5 

A more exacting test of the computational technique is that of a wave which 
climbs a sloping beach but does not break. If the slope is uniform, analytical 
solutions exist, derived by Carrier and Greenspan [4]. The initial form of this 
wave is given by them parametrically as follows: 

5a3 3a5 
7 = p 1 - 3caa + 4w + 2tu2 + 02)5/2 I I 
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where 
r) = v*/aL*, u2 = 16(/z* + q*)/aL*, 

x = x*/L*, a = 1.5(1 + 0.9#2. 

Here asterisks denote dimensional quantities, L* is a characteristic depth, and 
(Y is the bottom slope. The origin x = 0 coincided with the position of the shore 
point at time zero. Carrier and Greenspan show that if the constant p is less 
than 0.23, the wave will not break. 

The development of the wave for ~1 = 0.20 is computed by the authors and 
displayed in their Fig. 5 [4, p. 1031. We have reproduced their results in our 
computation, but because of the sensitivity of the computation in the region of 
the shore line, we have chosen to compare with their expanded display of the 
development in this region [4, Fig. 7, p. 1051. Even in this large-scale representation, 
Fig. 7, our results are within drafting error of the analytical solution, except 
for a single grid point at the shore line when the water is rising most rapidly. 

FIG. 7. Proties of a wave climbing a beach of constant slope without breaking (after figure 7 
of [4]). For specification of initial configuration, see text (Except for one point at the shore line 
for t = 0.20, the computed solution is within drafting error of the analytical solution.) (EX- 
periment 5). - Analytical solution; . . . . . . . computed solution. 

Experiment 6 

It is essential to test our techniques in two dimensions as well as one. However, 
the only analytical solution known to us which provided a sufficiently rigorous 
test-including nonlinearity and a sloping bottom without lateral boundary 
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conditions-is that of Ball [2] for a paraboloidal basin. The initial state of the 
free surface is a plane displaced from equilibrium. This condition, together with 
the paraboloidal bottom, produces a very special nonlinear oscillation in which 
the free surface not only does not break, but in fact remains a plane at all times. 
In the absence of rotation, the surface oscillates in such a way that its normal 
remains in the same plane. When the coriolis term is included, the plane surface 
also rotates about a vertical axis, and the velocity vector, constant in space at 
any time, rotates about a vertical axis and oscillates in magnitude. 

The shape of the basin is given by 

k(x,y)+[l -$-$1. 
This configuration defines a frequency 

D = (2gh&&22)1~2 

which, together with the coriolis frequency f, determines the frequencies of the 
system: 

w+ = [Q2 + &f2]l12 f $$ 

For details the reader is referred to the original paper. 
We have taken a = 14 km, h, = 10 m, and f = 10e3 set-l, which yield the 

periods 
Tl = 41.2 At, T2 = 107.9 At. 

j 7 (.I. ml 

FIG. 8. Vertical section along the x-axis of paraboloidal basin 

h = /z&f {l - x2/C? - J+/aa} 

with h,+, = 10 m, a = 14 km. The position of the free surface is shown at three times. Surface 
remains a plane with normal in plane of paper, so that parallel sections are similar. Theoretical 
verification: Ball [2] (Experiment 6). - Analytical solution; . . . . . . . . computed solution. 
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The unterrestrial value of the coriolis parameter and the shallowness of the water 
were partly dictated by computational economics: we have used only 49 x 49 
grid points. However, the parameter values determine a highly nonlinear computa- 
tion, since the maximum displacement of the surface from equilibrium is about 
12 m, or 120 % of the maximum depth hw (Fig. 8). This maximum displacement 
is of course at the shore line, and at this point the slope of the bottom is about 
twice that of the free surface. Thus small errors arising out of incorrect treatment 
of the shoreline points would introduce perceptible wiggles into the plane free 
surface (see Appendix B). 

The results of the computations are shown in Figs. 8 and 9. Ball gives no 
diagrams with which to make a comparison, and the rotating motion is not easy 
to visualize. We have presented in Fig. 8 a two-dimensional solution for the special 
casef = 0. Here the equations governing the x- and y-displacements are uncoupled, 
and the free surface remains independent of y. Figure 8 shows a vertical section 
through the x-axis. 

- X (AS) 

FIG. 9a. Plan form for the model of Fig. 8 but with rotation (f = 1O-3 set-l), at three~times. 
Inner curves are ‘the shore line (6 = 0). Straight dashed lines are contours of surface elevation in 
meters. Outer circles are locus of high-water points. Outer squares are boundary of computational 
grid. Velocity vector (uniform in space) is plotted at center of basin in arbitrary units. Surface 
remains plane at all times. Theoretical verification: Ball [2], (Experiment 6). 
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Figs. 9b, 9c. 
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For the rotating case (Fig. 9), we have indicated in plan form the shore line 
(that is, the intersection of the free surface with the basin), together with contours 
of elevation of the surface above equilibrium. The straightness and uniform 
gradient of the contours show that the surface remains a plane. The outer circle 
is the locus of high-water points, and the outer square is the boundary of the 
computing grid. 

CONCLUSIONS 

It is feasible to integrate the nonlinear shallow-water equations with rotation 
over a sloping bottom of arbitrary cotiguration, using any of at least three 
finite-difference formulations. No additional lateral boundary conditions need be 
applied, and the position of the shore line is determined by the computation 
at each time step. 

It would seem entirely possible to incorporate our two-dimensional techniques 
into an operational storm-surge forecast program. If so, a coast would be 
represented simply by specifying the bottom contours. Unwanted computational 
effects from artificial boundaries can be avoided, and the computation of the 
water movement up the shore could be of especial importance in very flat coastal 
areas. 

APPENDIX A. FINITE DIFFERENCE SCHEMES 

To facilitate the conversion of Eqs. (1) into a finite difference system, it is con- 
venient to write these equations by introducing the momentum components 

u* = !s, 

v* = b 

Then 

au* a 
- at + ax - (u*u + G43 + &v*u) -j-v* = gg, 

au* 
-x+& cu*v> + +(v*v+Gf2)+fi* =g+ 

(A.11 

We have used the symbol G to denote half of the acceleration due to gravity 
(G = g/2). 
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Using a rectangular, nonstaggered grid, the Lax-Wendroff analog to system 
(A.l) becomes (Scheme I): 

%k *“i’=u::-.jd,[~]+GAj[(P;.d2]+Ak[~]I 

+f At vi*.; + d;;lAjhj,k, 

-f At u;,nk + q&,$%&c, 

followed by a second step of the form: 

.$y,;2 = (;,I, - ~E(A~u;,;+~ + d,V;;+‘+l>, 

*n+2 
uj,k 

*n+2 
vi.k 

= 

= 

All parameters are defined as before, and for any variable 4 

The indices (j, k, n) denote a point (x, y, t) = (j Ax, k Ay, 12 At) of a discrete 
grid whose mesh size is determined by Ax = Ay = As and At. The ratio of 
these increments is given by E = At/2 As. 
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Following Arakawa’s formulation [4], it is also possible to approximate 
Eqs. (A.l) by: 

5%2.k+1/2 = i%112.k+1/2 - W&m+~,2 + 4cv%.k+m~ 

(cf;,$ln~,;l) = (.$fkui”.lc> - ~E{A~(U;;Q& + GS,[(r$;,;‘)“]) 

+ 4(~.,W,&c)~ + lZ3fAt v;.k + 24jhj.k) 

(t;,;%;,;‘) = ((;kv;k) - ~E{A&+%&,) + A,(~~~;~,v~,. + G6Jt;;1f])} 

+ .f;,;‘{-f At u”:,;’ + 2EgAkhj,k} 

followed by a second step for the velocity equations of the form: 

(~,~lu;,~) = (f;,k~;k) - ~E{A~(U;&~;,~ + G8k[([;,~)2]) + A,( P;;&u”:,;‘))) 

+ $y,Y{f At uysil + kA&j,k}. 

In the above equations, LJ~,:‘, uj”;tK’, vy,$ are the final values of the fields at time 
step (n + 1). The symbol - over a variable (e.g., 6) indicates that this is only 
a temporary value obtained at the first step of the numerical integration. The 
following definitions were introduced; 

Aj$Ek = 4X1/2.k - $L/2.k 

4d.k = +Y,k+1/2 - Kk-112 

w;k = HK++1/2.k + VT-112.k) 

Sk6.k = H4Tmk+l,2 + 4;.k--1/2) 

Uj*.k+l12 = (SjSj.k+l/2)(8kUi.k+l12) 

$tll2.k = (8k5j+1/2.k)(~jvj+l/2.k) 

u'i*+l12,k = 3(8juF+l/2.k+1/2 + 8jUj*,112.k-1/2) 

p 
ask+112 = Z k j--112,kt1/2 f l(6 v* 6 * kv~t1/2,kt1/2 > 

fj.k = 3(8itj,k+1/2 + 8j’$i.k--112)* 
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FIG. 10. Grid for Scheme II (Appendix A). 

The grid used for this system is displayed in Fig. 10. In the text we have referred 
to this finite difference representation as Scheme II. 

Finally, it is also possible to generalize a relatively simpler scheme whose 
properties for linearized problems have been studied in detail [lo]. In this case, 
we approximate Eqs. (1) by: 

n+1 
vi.k = l&(1 - dkU;,,} + u;,:(-j-At - cAj&} - gdiJ$.+kl, 

followed by a second step for the velocity equations of the form: 

m?&+l 
Uj.k = ~;,~{l - cAju;+j!> - •~;,~A,u;,~ +fAt z$,;’ - geA&;, 

;y+1 3,k = ~;,~{l - l A~til;;} - ~u;:Ap;; -fAdz,;’ - geA,$f. 

$,y, 2,:‘, and $i’ represent the final values of the fields at time (n + 1) At. 
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Other symbols are used according to definition (A.2). This system, referred to 
as Scheme III, was used with a nonstaggered grid of mesh size ds, dt, and as 
before E = At/2 ds. 

APPENDIX B. TREATMENT OF SHORE-LINE POINTS 

No difficulty whatever is encountered when the water is receding down the 
shore. However, when it is rising, a new underground point may enter the field 
at any time step. To compute the position of the new shore line, it is necessary 
to know the slope of the free surface at the present shore line, which of course 
does not, in general, coincide with a grid point. The use of a zero value for .$ at 
the first underground point will produce a kink in the free surface at the first 
underwater point, and the ensuing convergence at that point will cause an artificial 
rise in the surface, appearing as a small-scale wiggle. Since no smoothing operators 
are used in our computation, such wiggles would quickly propagate inward and 
contaminate the results. 

To prevent this, we estimate the slope of the free surface at the shore line by 
an extrapolation from the last two underwater points to the first underground 
point. In detail, the procedure is as follows. 

1. To determine the shore line, given a field of [, search outward from deep 
water until the first point is reached for which 5 < 6, where 6 is some small 
positive quantity determined by the accuracy of the computation. (We used 
6 = 10-6.) This is called the first underground point, denoted by J + 1 in Fig. 11. 
The last underwater point is then J. 

J-l J J+l 
FIG. 11. Technique of treating shore-line points (Appendix B). 

2. u is computed at underwater points only and at underground points is set 
to zero. 
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3. If t;+r is the first underground point at time step n, then (J..: is computed 
using: (i) a value of $y+i given by the linear extrapolation of e from J - 1 and J; 
and (ii) a one-sided difference of momentum with z$+i given by the linear extrapola- 
tion of un from J - 1 and J. 

Then symbolically, 

The procedure above is that for one dimension. In two dimensions the logic 
of the program becomes more complicated, but the principles are the same. 
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